Spheres in the Curve Complex

نویسندگان

  • SPENCER DOWDALL
  • HOWARD MASUR
چکیده

The curve graph (or curve complex) C(S) associated to a surface S of finite type is a locally infinite combinatorial object that encodes topological information about the surface through intersection patterns of simple closed curves. It is known to be δ-hyperbolic [5], a property that is often described by saying that a space is “coarsely a tree.” To be precise, there exists δ such that for any geodesic triangle, each side is in the δ-neighborhood of the union of the other two sides. In this note, we will investigate the finer metric properties of the curve graph by considering the geometry of spheres; specifically, we will study the average distance between pairs of points on Sr(α), the sphere of radius r centered at α. To make sense of the idea of averaging, we will develop a definition of null and generic sets in §3 that is compatible with the topological structure of the curve graph. Given a family of probability measures μr on the spheres Sr(x) in a metric space (X, d), let E(X) = E(X,x, d, {μr}) be the normalized average distance between points on large spheres:

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Curve Complexes of Non-orientable Surfaces

We explore non-orientable surfaces and their associated curve complexes. Studying the combinatorics modeled by the curve complex of a surface helps elucidate the algebraic properties of the mapping class group of the surface. We begin by studying geometric properties of the curve complexes of non-orientable surfaces and the geometric properties of natural sub-complexes of the curve complex. Fin...

متن کامل

$PI$-extending modules via nontrivial complex bundles and Abelian endomorphism rings

A module is said to be $PI$-extending provided that every projection invariant submodule is essential in a direct summand of the module. In this paper, we focus on direct summands and indecomposable decompositions of $PI$-extending modules. To this end, we provide several counter examples including the tangent bundles of complex spheres of dimensions bigger than or equal to 5 and certain hyper ...

متن کامل

Complex Extensors and Lagrangian Submanifolds in Complex Euclidean Spaces

Lagrangian //-umbilical submanifolds are the "simplest" Lagrangian submanifolds next to totally geodesic ones in complex-space-forms. The class of Lagrangian //-umbilical submanifolds in complex Euclidean spaces includes Whitney's spheres and Lagrangian pseudo-spheres. For each submanifold M of Euclidean «-space and each unit speed curve F in the complex plane, we introduce the notion of the co...

متن کامل

Poincaré Homology Spheres and Exotic Spheres from Links of Hypersurface Singularities

Singularities arise naturally in algebraic geometry when trying to classify algebraic varieties. However, they are also a rich source of examples in other fields, particularly in topology. We will explain how complex hypersurface singularities give rise to knots and links, some of which are manifolds that are homologically spheres but not topologically (Poincaré homology spheres), or manifolds ...

متن کامل

Heat Transfer in a Column Packed With Spheres

The purpose of the study is to investigate average and local surface heat transfer coefficients in a cylinder packed with spheres. Here the term «local» applies to a single sphere within the bed. Averages are derived from the sixteen different spheres that were instrumented and distributed throughout the bed. The experimental technique consisted of introducing a step - wise change in the temper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012